55. Photochemistry of 2,2-Dimethyl-2H-furo[3,4-b]pyran-4,7(3H,5H)-dione

by Sabine Lau and Paul Margaretha*

Institut für Organische Chemie, Universität, D-2000 Hamburg 13

(15.XII.87)

Irradiation ($\lambda > 340$ nm) of the title compound **2a** in *t*-BuOH affords 3, 3, 10, 10-tetramethyl-2,8-dioxatricyclo-[4.3.2.0^{1,6}]undecane-5,9-dione (**3**) via photoextrusion of 2-methylpropene and subsequent photocycloaddition of **2a** to the alkene. The same regioisomer **3** is formed selectively and in much higher yields on irradiating **2a** in the presence of excess 2-methylpropene. Irradiation of **3** ($\lambda = 300$ nm) in *t*-BuOH in the presence of the same alkene gives a 6:1 mixture of spirooxetanes **7a** and **7b** but not α -cleavage products. In 2-propanol, **2a** is photoreduced to a 2:1 mixture of diastereoisomeric hydrodimers **9**.

For some time, we have been interested in 2,3-dihydro-4-pyranones [1-4] and in 2(5*H*)-furanones [5] as model compounds in [2 + 2] photocycloaddition reactions. Two type of molecules, both isomers of the antibiotic patulin [6], contain these two ring systems fused *via* the common C--C bond, the 2*H*-furo[3,4-*b*]pyran-4,5(3*H*,7*H*)-diones 1 [7] and the corresponding furopyran-4,7(3*H*,5*H*)-diones 2 [8] [9]. We now report on the photochemistry of the title compound 2a.

Irradiation ($\lambda > 340$ nm) of **2a** in *t*-BuOH leads to decomposition of the starting material with formation of one new product **3**, albeit in low yield (15%). The CI-MS of **3** shows [$M + H^+$] at m/z 239 and the ¹H-NMR indicates the presence of 1 additional CH₂ group and 2 additional CH₃ groups. Both results combined suggest that **3** is formed from **2a** and 2-methylpropene. Indeed, irradiation of **2a** in *t*-BuOH saturated with this alkene affords **3** much faster and in very good yield. Competitive experiments in a 'merry-goround' setup show that for total conversion of **2a** to **3** in the presence of alkene, only 10% of **2a** are decomposed in its absence with very little formation of **3**. It, thus, becomes evident that **2a** undergoes photoextrusion of 2-methylpropene and that remaining **2a** undergoes [2 + 2] photocycloaddition to this alkene. The primary reaction product **4** apparently decomposes quantitatively to CO, CO₂ and CH₂=C=C=O (Scheme 1).

The first step in the photoextrusion of 2-methylpropene from 2a is the cleavage of the $(CH_3)_2C-O$ bond to give the alkyl-vinyloxy biradical 5. This is in analogy to the behaviour of benzyl enol ethers which undergo 1,3-migration of the benzyl group on irradiation

[10]. For biradical 5, β -cleavage to 2-methylpropene and 4 seems to be the preferred path over (a possible) spirocyclobutanone formation.

Cycloaddition of **2a** to 2-methylpropene is regiospecific, the orientation of addition being the one expected for the excited pyranone - but not for the furanone moiety [4]. The structure of 3 is proven by its ¹H-NMR spectrum wherein a W-coupling between $H_{a}C(7)$ and $H_aC(11)$ with J(1,5) = 1.0 is observed. No such coupling is observed for cycloadduct 6 formed from 2a and 2,3-dimethyl-2-butene.

When the irradiation of **2a** and 2-methylpropene is performed with light of $\lambda = 300$ nm, 3 is again formed selectively but then undergoes a consecutive photocycloaddition to the alkene to afford a 6:1 mixture of the diastereoisomeric spirooxetanes 7a and 7b (Scheme 2). The relative configuration of the major product 7a again results from ¹H-NMR, wherein $H_{a}C(11)$ and $H_{a}C(4)$ are deshielded due to the oxetane O-atom by 1.2 and 1.0 ppm as compared to $H_bC(11)$ and $H_bC(4)$, respectively. The MS of 7a and 7b are alike.

It is interesting to note that no α -cleavage products are formed from 3. This reaction occurs efficiently with strained bicyclo[4.2.0]octan-2-ones in the 'abnormal' mode

7Ь

Com- pound ^a)	UV (CH ₂ Cl ₂)	IR (KBr)	MS	^I H-NMR (CDCl ₃)	¹³ C-NMR (CDCl ₃)
2a	325 (34), 290 (sh, 4900), 280 (6600), 274 (sh, 6000)	1760, 1691, 1649	182 (40, <i>M</i> ⁺⁻), 56	4.99 (s, 2 H); 2.67 (s, 2 H); 1.57 (s, 6 H)	190, 168, 155, 124, 88, 67 (<i>t</i>), 49 (<i>t</i>), 26 (<i>q</i>)
3		1775, 1700	238 (1, <i>M</i> ⁺), <i>183</i>	4.78 (dd , $J = 10.6$, 1.0); 4.46 (d , $J = 10.6$); 2.76 (dq , $J = 15.6$, 0.9); 2.37 (d , $J = 15.6$); 2.32 (dd , $J = 12.5$, 1.0); 2.02 (d , $J = 12.5$); 1.49, 1.28, 1.22 ($3s$, CH ₃); 1.08 (d , $J = 0.9$, CH ₃)	206, 175, 81, 79, 73 (<i>t</i>), 49 (<i>t</i>), 43, 42 (<i>t</i>), 38, 30 (<i>q</i>), 26 (<i>q</i>), 25 (<i>q</i>), 24 (<i>q</i>)
6		1765, 1700	266 (1, <i>M</i> ⁺⁻), <i>183</i>	4.70, 4.32 (AB, J = 11.0); 2.50 (dq, J = 16.8, 0.8); 2.42 (d, J = 16.8); 1.46, 1.18, 1.13, 1.12, 1.09 (5s, CH3); 1.12 (d, J = 0.8, CH3)	
7a		1762 ^b)	no M ⁺ at 294, 239 (20), 183 (95), 56	$\begin{array}{l} 4.30 \ (d, J = 10.4); \ 4.05 \ (dd, \\ J = 10.5, \ 1.0); \ 4.30, \ 4.02 \ (AB, \\ J = 5.6); \ 2.96 \ (dd, \ J = 12.0, \ 1.0) \\ 2.37, \ 1.38 \ (AB, \ J = 14.8); \ 1.72 \\ (d, \ J = 12.0); \ 1.48, \ 1.22, \ 1.15, \\ 1.11, \ 1.10, \ 1.04 \ (6s, \ CH_3) \end{array}$;
9a		1765, 1718°)	$367 (100, [M + 1]^+)^{d})$	5.02 (dd, J = 8.7, 1.7); 4.44 (dd, J = 8.7, 8.2); 4.23 (dd, J = 8.2, 1.7); 2.49, 2.40 (AB, J = 14.0); 1.40, 1.07 (2s, CH3)	
9b				4.83 (dd , $J = 9.5, 2.5$); 4.47 (dd , $J = 9.5, 9.1$); 4.00 (dd , $J = 9.1, 2.5$); 2.64, 2.47 (AB , $J = 13.9$); 1.46, 1.07 ($2s$, CH ₃)	

Table. Spectroscopic Data of Compounds 2a, 3, 6, 7, and 9

All new compounds gave satisfactory elemental analyses.

*) かい い In CH₂Cl₂.

Mixture 9a/9b.

CI-MS spectrum.

[11–13]. Thus, biradical **8** should be formed, but this species cannot rearrange neither to a ketene nor to an unsaturated aldehyde and, therefore, will reclose to **3** (Scheme 2).

Finally, irradiation ($\lambda > 340$ nm) of **2a** in 2-propanol gives a precipitate consisting of a 2:1 mixture **9a/9b**. Both compounds **9** have the molecular weight M^+ 366. The IR spectrum indicates both a ketonic and a lactone CO group and the ¹H-NMR, recorded immediately after dissolving **9** in CDCl₃ as decomposition occurs on standing at r.t. in CDCl₃ or CD₃COCD₃, indicates an *ABC* pattern for the CH₂ group next to the O-atom. These results suggest that **9a** and **9b** are *meso* and (*RS*, *RS*) hydrodimers (*Scheme 3*).

The spectroscopic data of compounds 2a, 3, 6, 7, and 9 is summarized in the Table.

Experimental Part

General. See [5]. Anal. GC: 25-m SE 30 capillary column.

Starting Materials. Furopyrandione 2a was synthesized according to [9].

Photolyses. These were performed in a *Rayonet-RPR-100* photoreactor using either 350-nm lamps in combination with a liquid filter with cut-off at $\lambda = 340$ nm [14] (irradiation of 2a) or $\lambda = 300$ nm lamps (irradiation of 3). Irradiation of 2a. An Ar-degassed soln. of 182 mg (1 mmol) of 2a in 5 ml of *t*-BuOH is irradiated ($\lambda > 340$ nm)

for 80 h. Evaporation of the solvent and recrystallization of the residue from Et_2O /pentane affords 30 mg (13%) of 3,3,10,10-tetramethyl-2,8-dioxatricyclo[4.3.2.0^{1,6}]undecane-5,9-dione (3). M.p. 128–130°.

Irradiation of 2a and 2-Methylpropene. A soln. of 910 mg (5 mmol) of 2a in 10 ml of t-BuOH saturated with 2-methylpropene is irradiated ($\lambda > 340$ nm) for 16 h. Work up as above affords 904 mg (76%) of 3.

Irradiation of 2a and 2,3-Dimethyl-2-butene. An Ar-degassed soln. of 910 mg (5 mmol) of 2a and 2.1 g (25 mmol) of 2,3-dimethyl-2-butene in 10 ml of t-BuOH is irradiated ($\lambda > 340$ nm) for 32 h. Workup as above affords 905 mg (68%) of 3,3,10,10,11,11-hexamethyl-2,8-dioxatricyclo[4.3.2.0^{1.6}]undecane-5,9-dione (6). M.p. 65–68°.

Irradiation of 2a in 2-Propanol. An Ar-degassed soln. of 910 mg (5 mmol) 2a in 10 ml of 2-propanol is irradiated for 14 h. Filtration and drying of the white crystalline precipitate affords 732 mg (80%) of a 2:1 mixture (GC) of diastereoisomeric hydrodimers 9a/9b. M.p. 185° (dec.). Compounds 9 decompose at r.t. in CHCl₃ or acetone soln. to unknown products.

Irradiation of 3 and 2-Methylpropene. A soln. of 476 mg (2 mmol) of 3 in 5 ml of t-BuOH saturated with 2-methylpropene is irradiated ($\lambda = 300$ nm) for 40 h to afford a 6:1 mixture (GC) 7a/7b. Chromatography (SiO₂, CH₂Cl₂) affords 282 mg (48%) 3,3,3',3',10,10-hexamethylspiro[2,8-dioxatricyclo[4.3.2.0^{1,6}]undecane-5,2'-oxetane]-9-one (7a). M.p. 81–84°. The minor component 7b was not isolated.

REFERENCES

- [1] P. Margaretha, Tetrahedron 1973, 29, 1317.
- [2] P. Margaretha, Liebigs Ann. Chem. 1973, 727.
- [3] P. Margaretha, Helv. Chim. Acta 1974, 57, 2237.
- [4] P. Margaretha, Chimia 1975, 29, 203.
- [5] E. Anklam, P. Margaretha, Helv. Chim. Acta 1983, 66, 1466.
- [6] P. Coudert, J. Couquelet, J. Fialip, F. Sannajust, P. Bastide, A. Eschalier, Farmaco, Ed. Sci. 1987, 42, 145.
- [7] S. Gelin, P. Pollet, J. Heterocycl. Chem. 1975, 12, 787.
- [8] B. Puetzer, C.H. Nield, R.H. Barry, J. Am. Chem. Soc. 1945, 67, 832.
- [9] J. Couquelet, P. Tronche, Bull. Soc. Chim. Fr. 1968, 2015.
- [10] J.T. Pinhey, K. Schaffner, Austr. J. Chem. 1968, 21, 2265.
- [11] P.J. Nelson, D. Ostrem, J. D. Lassila, O.L. Chapman, J. Org. Chem. 1969, 34, 811.
- [12] R.J. Batten, H.A.J. Carless, J. Chem. Soc., Chem. Commun. 1985, 1146.
- [13] G. Cruciani, C. Semisch, P. Margaretha, manuscript in preparation.
- [14] D. Bellus, D. R. Kearns, K. Schaffner, Helv. Chim. Acta 1969, 52, 971.